三体问题


写物作文 2019-10-06 07:12:35 写物作文
[摘要]第一篇三体问题:三体问题详解及其历史三体问题详解及其历史【导读】这一阵在看刘慈欣的《三体》,的确是好科幻小说。不过,再好的科幻小说也仍然是科幻,更何况“硬度”不一,科学背景上总归能找出不合事实的地方来。当然,这些不能说就是Bug,毕竟,总得让写书的有些自由发挥的余地,反正这又不是写物理论文。 而且,

【www.shanpow.com--写物作文】

第一篇三体问题:三体问题详解及其历史


三体问题详解及其历史
【导读】这一阵在看刘慈欣的《三体》,的确是好科幻小说。不过,再好的科幻小说也仍然是科幻,更何况“硬度”不一,科学背景上总归能找出不合事实的地方来。当然,这些不能说就是Bug,毕竟,总得让写书的有些自由发挥的余地,反正这又不是写物理论文。 而且,好的科幻容易把人拉入梦境中,比如看《球状闪电》的时候,我时常会有出冷汗的感觉。这个时候,科学知识可以把人从小说营造的意境中拉出来,象我逃离量子玫瑰等充满鬼气的情节的法子就是念叨“我相信系综解释”。多了解些背景,兴许可以少做些噩梦。 三体问题 不消说,光从书名上看,三体问题就是《三体》最大的背景之一。 三体问题算是经典力学里面的天体力学的老难题了,从牛顿那个时候起就是物理学家和数学家的恶梦。 先说一下什么叫三体。用物理语言来说,在一个惯性参考系中有N个质点,求解这N个质点的运动方程就是N体问题。参考系是惯性参考系,也就是说不受系统外的力的作用,所有的作用力都来自于体系内的这N个质点之间。在天体力学里面,我们通常就只考虑万有引力。 用数学语言来说,经典力学的N体问题模型就是,在三维平直空间里有N个质点,每个质点的质量都已知而且不会变化。在初始时刻,所有质点的位置和速度都已知。每个质点都只受到来自其它质点的万有引力,引力大小由牛顿的同距离平方成反比的公式描述。要求解的就是,任意一个时刻,某个质点的位置。 N=2,就是二体问题。N=3,也就是我们要说的三体问题了。 N=2的情况,早在牛顿时候就已经基本解决了。学过中学物理后,大家都会知道,两个质点在一个平面上绕着共同质心作圆锥曲线运动,轨道可以是圆、椭圆、抛物线或者双曲线。 然而三体运动的情况就糟糕得多。攻克二体问题后,牛顿很自然地开始研究三体问题,结果也是十分自然的——头痛难忍。牛顿自述对付这种头痛的方法是:用布带用力缠紧脑袋,直至发晕为止—虽则这个办法治标不治本而且没多少创意,然而毕竟还是有效果的。 其实,三体运动已经是对物理实际简化得很厉害了。比如说对质点,自转啦、形状啦我们统统不用考虑。但是只要研究实际的地球运动,就已经比质点复杂得多。比如说,地球别说不是点,连球形都不是,粗略看来是个赤道上胖出来一圈的椭球体。于是,在月球引力下,地球的自转轴方向就不固定,北极星也不会永远是那一颗。而考虑潮汐作用时,地球都不能看成是“硬”的了,地球自转也因此越来越慢。 然而即使是极其简化了的三体问题,牛顿、拉格朗日、拉普拉斯、泊松、雅可比、庞加莱等等大师们为这个祭坛献上了无数脑汁也未能将它攻克。 当然,努力不会完全白费的,许多有效的近似方法被鼓捣了出来。对于太阳系,摄动理论就是非常有效的解决问题的近似方法。而对于地月系统,则可以先把地球和月球看作是二体系统,再考虑太阳引力的影响。“月亮绕着地球转,地球绕着太阳转”的理论计算已经作得非常精确,上下几千年的日食月食都能很好地预测。而对一颗受到行星引力干扰的彗星,人们也能算出一段时间内很精确的轨道,比如天文学家可以提前几年就预测出彗星撞木星。而且,太阳系的稳定性也在很大程度上得到了证明,比如说大行星的轨道变化大体上是周期性的,不会始终单向变化下去直到行星系统解体。 从数学方法来说,解2体问题的方法是解微分方程组,通过求积分的方式可以圆满解决,得到解析解。很自然的,物理学家和数学家们也用这种方法去对付三体问题。1772年,拉格朗日就已经把三体问题的18个方程简化成了只有6个。然而,进步到此为止了。19世纪末期的研究更是给了数学家们一连串打击。布伦斯(1887),庞加莱(1889)和潘勒斯(1898)年给出了一个比一个更严格的证明,堵死了求积分的许多途径。1941年西格尔干脆证明了代数积分法的死刑,宣布找到足够的代数积分是不可能的。当然,三体问题的数学研究不是除了失败外就一无所有,它还是带来了许多新发现,比如混沌理论就是从它的废墟中诞生的。 当然,我们还只是谈到了牛顿力学。如果考虑到广义相对论的修正,那就更糟糕了,连二体问题都只有近似解。而且,广义相对论的二体问题也不稳定,由于发射引力波损失能量,两个星体迟早会撞在一起,虽说要等的时间可能比宇宙寿命还长。先说明一下天文学家是怎么得到三兄弟的这些数据的。恒星目视星等是可以直接测量的。南门二离我们很近,用三角视差方法就可以很精确地测出距离。事实上,南门二是最早被测出距离的恒星(当然太阳除外),但是由于在南非观测它的英国天文学家亨德森要等到回到英国后才能发表观测数据,结果1838年,德国天文学家贝塞耳在柯尼斯堡观测的天鹅座61号星抢到了第一的座次。有了距离和目视亮度,就可以很容易地算出绝对亮度。 恒星的表面温度,则可以通过研究恒星的光谱来确定。根据黑体辐射定律(比如斯忒藩定律或者普朗克公式),恒星亮度和表面温度的4次方成正比,而且亮度和恒星的表面积成正比(也就是和半径的平方成正比)。所以,根据已经测到的数据,得出三兄弟的半径也不难。 测质量相比之下就要麻烦不少。南门二的老大和老二是一对离得比较近的双星,平均距离23个天文单位(地球到太阳的平均距离),绕行的周期则是大约80年。有了轨道数据(当然不止这两个数据),从牛顿力学就可以算出南门二A和B的质量的精确数值。 而比邻星的质量就难测多了。比邻星这个小弟兄目前离两个哥哥太远了,大约有0.2光年,相当于A,B两星平均距离的500倍以上,而且其质量又小。所以,靠测量比邻星的引力对南门二A,B的影响来确定其质量是不行的。目前采用的比邻星质量是个推测值,按照理论模型和其他类似亮度和温度的恒星的质量来估计,得到了一个很小的质量,只比太阳的十分之一稍大些。 南门二的A,B两星以椭圆轨道在互相绕行,下面是它们轨道的图示(这里还加上了一个假想的地球)。 它们的轨道相当扁,偏心率大约0.5。图中它们都在“近日点”。当然不用担心它们会相撞,它们的运动周期一致,是同步的。离得最近时候是11个天文单位(比太阳到土星稍远),相距最远时候则达到35个天文单位(比太阳到海王星稍远)。因为它们的轨道平面不是正对着我们的,从地球上观测,以南门二A 为参考点,南门二B将描出下图所示的一个很扁的椭圆。 为了更好的领略南门二的风景,我们就发动时空传送机器(用《流浪地球》的那种变态的地球发动机?太土老冒了吧),把我们的地球传送过去实地旅游一番吧。 南门二A星是老大,和太阳非常相似,事实上,它是太阳周围三十光年内和太阳最相似的恒星了。如果真的说“海内存知己,天涯若比邻”,那对它是非常合适的。既然如此,那就给我们一个回家的感觉,把地球安置在离南门二A一个天文单位的圆形轨道上吧。 啊,这将是一场灾难。不要忘了,南门二A的质量比太阳大10%,亮度则要大51%。现在只不过多排放了一些温室气体,造成的全球变暖就已经搞得人心惶惶了。如果太阳增亮一半,那地球上简直就要寸草不生了。 “第XXX代文明在酷热中毁灭了,原因是时空穿越的位置设定错误。。。”(真丢人) 不行,我们要补救一下,把地球挪远一些,离南门二A的距离增大到1.23个天文单位,这样,南门二A提供给地球的光照就和太阳一模一样了,我们仍然能有一个气候适宜,生命繁盛的地球。 轨道情况让我们相当满意,因为南门二B虽然离得相当近,但是最近时候的距离仍然比到南门二A的距离要大将近9倍,因此,对地球的轨道干扰也不大。可以指望地球可以在圆轨道上过着相当稳定的生活。 现在是白天,先让我们赞美“万物生长靠太阳”。抬头看去,南门二A和我们原来熟悉的那个太阳相比,看上去要稍微小了些(视直径小了大概 2.5%),如果我们没有忘了把月亮也原封不动地拖过来,那么在这里就不会看到日环食了,只会是日全食或者日偏食。但是因为南门二A的表面温度比太阳高了一点点(太阳的表面温度是5700K),所以它的表面显得要更亮些。粗心一点的话,你不会觉得太阳已经换了一个。一年比我们现在长了三四个月,但区别也不算太大。 如果时辰凑巧的话,我们还可以在晴空中看到一个明亮的“飞星”,这就是南门二B。它的亮度在南门二A这个“太阳”的1/300到1/3000的范围内变化,取决于当前它离我们有多远。当然,老师们会向你强调不能用肉眼直接看太阳,同样他们还会强调也不要用肉眼直接看“飞星”。因为南门二B的亮度仍然到了刺目的地步,相当于月亮亮度的1000~100倍,足以伤害你的眼睛了。 当“飞星”最亮的时候(也就是最近的时候),可以看到它并不是“星”,而是一个小太阳,直径大约是太阳的十分之一,可以看出一个小小的圆面。最暗的时候,肉眼就看不出什么结构了,看上去就是一颗非常亮的星星,但是在望远镜下,它的圆面依然可见,和真实世界中我们看木星差不多大。但不论如何,它的亮度之大,都足以保证即使是在白天,我们也能很容易地看到它。 太阳下山了,让我们看看星空吧。呃,怎么天还这么亮,什么星星都看不到?原来“飞星”还没下山呢。“飞星”亮度达到月亮的1000~100倍,在它的照耀下的“夜空”仍然非常明亮,如同我们常见的阴天,而地面的亮度和写字楼里面没什么两样,尽可以看书写字。由于南门二B的表面温度要比太阳低不少,它的颜色是橙黄色的,在“飞星”的照耀下,天空和大地如同被城市街道旁的高压钠灯照亮,沐浴在一片温和的橙色光辉中。 如果对“飞星”的运行感兴趣,我们就得对它进行长时间观测。它的运行有如太阳系里的外行星的运行规律,每80年(换算成南门二A的“地球年”当然只有大概60“年”)在天球上相对于恒星背景运行一圈,而且每“年”都会有两次“飞星不动”的现象。当然,这并不是什么大灾难的前兆,只不过是地球的运行方向此时正好朝向或者背离南门二B而已。持续时间也不过几天,和太阳系里外行星运动的“留”实际上是同一回事。 其实,南门二B也是不错的人类安身之所,虽然说亮度只有太阳的一半不到。但是只要离得近些就好了。金星的轨道就是个很不错的选择。同样,这样一个轨道也是相当稳定的,在上面我们可以看到一个比较大的橙色太阳,还有一颗黄色的,更亮更大的“飞星”。在牛顿的经典力学体系里面,对三体问题的简化可以用下面这张图大体表示一下(在这里把月球火箭的轨道计算作为一个三体运动的一个实际应用的例子,实际上比三体运动还要复杂) 二十世纪50年代后,数学家们多了一个新帮手:计算机。于是,两个新办法出来了,一个是用级数表示积分(简单代数积分不指望了),另一个则干脆是使用数值方法求近似解。 级数解在理论上获得了很大成功,比如在限制性圆型三体问题中,已经证明了所需要的积分是存在的(但是另一方面早就证明了用代数公式是不能表达的)。这些积分可以用幂级数表达,而且证明了幂级数是收敛的。但是这些幂级数收敛得太慢了,比如对拉格朗日点,为了达到可以接受的精度,至少要取10^80000项!而整个宇宙中的粒子数也就10^80个的样子。 计算机的加盟使人们对三体问题不是那么无助了。虽然没有代数公式,但用数值算法硬算的结果,精确性也不错。比如,发射飞船去探测其他行星就是典型的三体问题,旅行者2号说去海王星就一定到得了。再比如,太阳系大行星4000万年内的运动也算了出来,至少往后这段时间,太阳系的行星系统还不至于散架。 让我们看看三体问题的大致现状吧: 1.目前的研究主要集中在限制性三体问题,因为比较简化,而且有实用价值。 2.对于限制性三体问题,通过级数法证明了解的存在性(这已经是非常大的成果了)。而且,天体力学的定性分析和天文观测(比如地球上繁衍了几十亿年的生命)都证明了限制性三体体系的稳定解的存在性。 3.用解决二体问题的方法,也就是代数积分的方法被确认不可能解决三体问题。 4.用计算机进行较长期的三体问题的数值计算是成功的。 5.三体问题的算法还大有可改进之处。毕竟,10^80000项的计算是太过于可怕了。 回到《三体》小说,有了“秦始皇”的“人计算机系统” ,算个简化的三体问题还是可以的。不过,如果是小说中那种三个太阳的质量差不多,而且相互距离也差不多的情况,他们面对的三体问题就不能简化为限制性三体问题,计算的难度要大很多。不过,用计算机算出比较短时间的预测应该是可行的。毕竟,天气预报不一定非得要知道明年今天的具体天气,能比较准确知道一周天气就不错了(通常我们还只听听明天是否下雨呢)。三体人知道是不是该“脱水”或者“浸泡”就已经很有好处了。用观测不断修正预测,至少对小的“乱世代”不用害怕了。 当然,如果三体文明只是在I/II类文明的层次,不能通过移走恒星来釜底抽薪地解决三体问题。那么,“但重要的是改变世界”这句话就仍然是正确到了残酷的地步,预测出“三星凌空”也无助于逃脱毁灭。 到目前为止,我们一直在用纸、笔还有计算机讨论三体问题,用的都是演绎法。但不要忘了,科学方法里还有另一件更重要的武器:归纳法。我们可以用观察和实验,看看实际中的三体会是什么样子。 由于在我们日常的尺度上,万有引力弱得可以忽略,只有到了天文尺度上,引力才显出它的威力,比如地球把我们拉在地上不放。所以,在普通的实验室里面实现三体系统是不行的。我们只能把视线转向天空,去考察大自然为我们安排了什么样的实例。 当然,象我们已经看到的,在太阳系里,已经充分表现了限制性三体问题是有稳定解的。但是,就基本同量级的三体又如何呢?我们可以来看看恒星。 银河系里的恒星不下一千亿颗,象太阳这样独居的恒星其实是少数。恒星们总的来说还是喜欢热闹的。双星的数量非常多,而且很多都已经是几十亿年的老伴侣了(比如下面要谈到的南门二A/B),等于从实验上证明了二体系统的稳定性。 而三合星也不少见,但是一般都是一对双星再搭上一个远距离的单星。同样,更多数量恒星组成的聚星,也多是由双星和单星组合而成的。应该说这也强烈地暗示了,大自然也认为三体系统是不稳定的。毕竟,银河系里的三体并不是理想的三体系统,一则恒星可以相撞而合并,二来,一旦一颗恒星被抛出太远,它就可能脱离体系而主要由银河系的整体引力而控制了。通过这两种方式,三体系统就变成了稳定的二体系统了。 当然,还有“四边形聚星”这种系统,恒星彼此质量相近,距离也都差不多。最著名的一个例子就是猎户座大星云M42中心的四边形聚星(用5厘米左右的望远镜,放大率50~100倍就可以分辨开)。值得注意的是,这些四边形聚星都非常年轻,比如猎户座四边形聚星,年龄就只有几百万年,对于天文学来说,这完全是婴儿期。没有发现年老的四边形聚星,说明大自然认为这种构型也不稳定,总归会瓦解掉。 猎户座大星云M42的中心区,图中央的4颗亮星就是猎户座四边形聚星 有意思的是,N值再增大,比如N=100级别的疏散星团或者N=10万级别的球状星团,又是非常稳定的力学体系了,年龄超过几十亿年乃至百亿年的这些星团比比皆是。当然,过于密集的结果就是碰撞很多,球状星团中央就有大量碰撞后合并而成的亮星。 昴星团(M45),年龄约5000万年,算是相当年轻的疏散星团,约有100颗成员星 球状星团M13,年龄超过100亿年,成员星约有30万 半人马座α(南门二)三合星系统 毫无疑问,《三体》里面的三体人所居住的行星所在的系统的“生活原型”就是半人马座α(南门二)三合星系统。 在地球的夜空中,南门二是全天第三亮星(仅次于天狼星和老人星),视亮度达到-0.27等。不过,对于大部分中国人来说,看到南门二的机会不大。南门二太靠南了(赤纬-60度),考虑到光污染,北回归线以北的人不要指望能在地平线上看到它。(红岸那个地方应该是收不到南门二的信号的,当然小说总可以引入其它机制) 用不大的望远镜就可以把南门二分解成两颗亮星,两颗星的角距离在2000年时候约为14”,是我们看到的太阳的视直径的1/120不到,大概是人眼分辨率的四分之一。而南门二的第三个成员,有名的比邻星,就不是容易看到的了。它的亮度很暗,相当于肉眼能看到最暗恒星的百分之一,必须用相当大的望远镜才能看到。比邻星离开两颗主星的距离也很远,视距离有2.2度,比太阳视直径的4倍还要多。 我们先简单看一下这三颗恒星的物理数值,并且和我们的太阳比较一下。 到地球距离(光年) 目视星等 绝对星等 表面温度 总光度(太阳=1) 半径(太阳=1) 质量(太阳=1) A:4.35 0.01 4.38 5800K 1.51 1.2 1.10 B:4.35 1.34 5.72 5300K 0.47 0.84 0.91 C:4.22 11.05 15.49 2700K 0.0017 0.19 0.11 (光度和目视亮度其实还是很有区别的,在此马马虎虎混淆一下) 明显的,比邻星离我们比两个大哥哥要近不少。南门二是已知离太阳最近的恒星系统(距离更近而且还不被发现的可能性不大,《超新星纪元》里面那样一颗巨星实际上是躲不过天文学家的),比邻星就成了除太阳以外离我们最近的恒星。“海内存知己,天涯若比邻”,它就得到了这么一个富有诗意的中文名字。当然我们下面将要看到,这个名字实在不适合它,它和太阳实在是一点也不像,和“知己”相去太远了。南门二的老大倒是和太阳非常相似。 扯远了,回到我们这个地球上来吧。现在,“飞星”也下山了,这次,真正的夜晚终于来临了,点点繁星洒满了夜空。假设你熟悉星空(现在城市的孩子真可怜,银河大概从来没见过),这里的星空将是相当熟悉的,没有特别大的变化。这也是当然的,毕竟从太阳到南门二A,我们的位置只移动了4.35个光年,并不是很大的距离。仔细观察,有几颗醒目的亮星的位置变化不小,比如天狼星。那是因为这些恒星离太阳的距离也很近(天狼星是8.6光年),移动4光年带来的变化就不能忽视了。不过,最大的变化是很明显的,这里的半人马座的最亮星不见了。哦,还想找南门二么?那两个家伙都已经下山了。另外,这里的仙后座多了一颗光辉灿烂的黄色亮星,能排到全天十大亮星内。不要迷惑,这颗亮星就是我们所来之处:温和而伟大的太阳。如果你是位天文学家,想考察太阳是否有行星的话,作为从那里过来的移民,我可以告诉你,太阳最大的行星叫木星,从南门二这里看,它离开太阳的角距离最大时候也不到4",亮度只有21等,只有太阳亮度的一亿分之一左右。直接观测可能有些困难,但是用天体测量的方法,你应该可以发现太阳的运行轨迹有点波浪形,从而推断行星的存在。 太阳是颗温和的恒星。它已经维持目前的亮度50亿年了,还将维持50亿年。其亮度在这100亿年里会缓慢增加,但是不会超过一倍。在人类有关于太阳的天文观测记载以来,在可见光区域,它的亮度改变从未超过千分之一。南门二A,B也是这样的温和的恒星,稳定而可靠,有着漫长的寿命。 等等,不是说南门二是个三合星系统么,老三哪里去了?比邻星——南门二C实在是太暗了。即使是现在处于南门二A的地球上,南门二C离开我们的距离只有大约0.2光年(约12000个天文单位),仍然是亮不到哪里去。在夜空的繁星中,比邻星不过是一颗很不起眼的暗淡的红色恒星,肉眼勉强可以看到而已。由于表面温度太低,它的颜色是红色的,实际上,它的绝大部分能量都是以我们看不见的红外线方式发出来的。但是,偶尔它也会突然引人瞩目。比邻星是一颗耀星,有时候在几分钟内亮度可以突然增加几倍,变成一颗相当明亮的星星,然后又在几分钟后迅速暗淡下去。除此之外,普通人根本不会察觉到比邻星和其它恒星有什么区别。而天文学家们会很快注意到它的距离很近,而且运行“相当”快――大约50万年到200万年就可以绕着南门二A和B转一圈。(偷偷说一句,不要太信任天文学家了,看看,仅仅是要他们测一个简单的周期数据,误差就可以达到4倍。而且,还有人认为比邻星只是个过路的,根本不是南门二的一部分。) 现在回头来看,南门二虽然是个三合星系统,但是这个三体并不复杂,因为小弟弟离得实在太远了(是老大、老二之间距离的近600倍)。这个体系实际上是由一对很近的双星加上一个很远的单星组成的。单星对双星的运动没有多大影响,而在处理单星的运动时,双星完全可以当成一个天体来对待。所以这个三体,用两次二体问题就可以解决得相当好。我们假想的地球完全可以舒舒服服过日子。 这么看来,南门二应该是一个产生生命,甚至是智慧生命的好地方。可惜,就目前我们所掌握的观测和理论来说,这个可能性都不存在。原因很简单,按我们目前的认识,生命总归要产生于行星之上(那些更奇妙的生物,实在是完全出于想象,就不讨论了)。而从观测上,还没有发现南门二A/B拥有行星的任何迹象。从行星形成理论上,南门二A/B是比较近距的双星,在恒星形成阶段,它们的引力会彼此干扰,使得尘埃和气体没有机会凝聚起来形成行星,接下来再把这些物质清扫一空。相应的太阳系里的例子是,木星内侧的小行星带里,就没能形成一颗大行星,而木星还时不时把一些倒霉的小家伙拉过来变成卫星或者干脆吃下去。 南门二A/B虽然都足够明亮,而且稳定又长寿,和太阳一样适合生命,但却一开始就丧失了产生生命的舞台。如果人类要飞出太阳系,向宇宙移民,南门二倒也是一个不错的选择。不过这将是一场自助游,我们得自备一颗行星带过去。 顺便说说,如果我们的太阳真的寿数已尽(比如《流浪地球》里面那样),那么南门二可否当作避难所呢?很可惜的是,如果我们目前对恒星的观测和理论是对的话,结论还是不行。恒星的稳定期和它的质量是负相关的,质量越大寿命越短(体重超标的弟兄们还是减点肥吧)。南门二A的质量比太阳稍微大那么一点儿,意味着它的寿命也会比太阳短一点。而且,从观测到的各项指标看,南门二比太阳本来就要老上一点。这么看来,太阳不行了的时候,南门二A已经先顶不住了。 而当太阳(以及南门二A)到达晚年时候会怎么样呢?内部核反应的加剧和氦燃烧的进行(《流浪地球》里面那样戏剧化的氦闪就不要轻信了),使得太阳半径膨胀数百倍,超过地球轨道的半径。表面温度下降到4000K不到,但是由于面积大大增加,总的亮度会超过现在的太阳的1000倍。这时的太阳就成为一颗典型的红巨星。离得近的行星会**脆气化,远的也难逃被烤焦的命运。 如果南门二A变成红巨星,即使是南门二B旁边的行星也会被烤焦(就算“脱水”也不行)。而且,南门二A膨胀后接近于洛希半径,南门二B将会乘机剥掉它的外皮并据为己有。此时,灼热的气体、尘埃和带电粒子大量地由南门二A喷出,然后被南门二B吞噬。这将是一幅很壮观的景象,不过对生命来说,则是毁灭性的。当然,如果人类能够避免迅速的毁灭,撑到那么久远的未来,这种灾变兴许就根本不算回事了。那个时候,也许我们早就可以玩弄恒星于指端了。 
不敢高声语,恐惊天上人 我们已经被科幻小说中的外星人吓得够厉害了。与其相信良好的愿望,还是实力更可靠。毕竟我们好像都不太信三体人“必然拥有更高的文明和道德水准”,连叶文洁都不太确信。 那么,我们本能的反应应该是“关起门来搞发展”,外星人找上门来那算是没办法认倒霉了,至少我们别去招惹他们。就像叶文洁在红岸收到的第一个三体人发来的信号,要她不要再发出任何信号了。这个想法,李白早就说得很明白了:“危楼高百尺,手可摘星辰。不敢高声语,恐惊天上人。” 可惜,即使是对于一个只具有人类目前技术水准,比如拥有阿西雷博射电望远镜的外星文明来说,我们现在就开始集体“失声”也来不及了。我们已经把自己暴露得够充分了。晚了,现在想躲起来已经太晚了。 直径305米的阿西雷博射电望远镜,目前世界上最大的射电望远镜。镜面是固定式的,通过移动悬挂在空中的接受装置,可以观测到比较大的天区。 阿西雷博射电望远镜地处加勒比海上的波多黎各岛上的一个小盆地。利用地形,4万块铝板在这个小盆地中拼接起来,构成一个固定的抛物面天线。从遥远的宇宙中传来的无线电波经过天线的反射,会聚在悬挂在天线上方的接收装置上。这个看起来不大的接收装置到天线底部的高度是140米,重达900吨,里面还带着大量冷却用的液氦。接收装置是可以移动的,这样,就不至于只能观测头顶上那一个点,而是可以观测比较大的一片天区。 这个固定式的射电望远镜直径达到305米,是目前最大的,接收面积相当于十几个足球场。相比之下,最大的可转动射电望远镜则是美国国立射电天文台新建成的110*100米望远镜,位于西弗吉尼亚州绿岸(叶文洁的“红岸”就对应于这里)。这种大个子的射电望远镜也常常被称为行星雷达站,因为它们常常用来作行星际的雷达观测,比如发射电波到金星,再接收返回的电波。通过这种观测,可以测定金星的距离(顺便验证一下广义相对论),测定金星的自转周期,画出金星的表面地图。 至于说到射电望远镜的接收灵敏度,一个例子是1972年发射的先驱者10号探测器,它的发射天线直径2.7米,发射功率只有8瓦(比普通25瓦灯泡都小得多),而且由于电池电力下降而逐渐减小。但是在它在2003年因缺电而彻底丧失联络之前,已经飞到了122亿公里之外,而在这个距离上,地球的几个直径60米级别的射电望远镜仍然和它保持着联系。正因为如此,现在射电天文观测的主要困难在于环境噪声,比如绿岸天文台内及其周边是严格禁止普通汽车的,汽车只能使用柴油机。因为汽油机的火花塞的电火花会产生频率很广的电波,虽然似乎是毫不起眼的小火花,但也足以干扰到射电望远镜的工作。 相比之下,阿西雷博的发射功率达到1兆瓦(当然比红岸的25兆瓦还是小好多)。再加上良好的定向性和窄频,其通讯能力之强可想而知。用德雷克的话来说,如果在银河系(直径十万光年)的另一端也有一架阿西雷博望远镜,选择好方向和频率,地球和它完全可以实现无线电通讯。 说到德雷克,在外星文明探测上他是开路者。1960年,正是他在绿岸天文台启动了奥兹玛(OZMA)计划,用26米射电望远镜探测外星生物的射电信号。探测目标是鲸鱼座τ星(天仓五)和波江座ε星(天苑四),这是两颗类似太阳的单星,距离都是11光年左右,共监测了200小时。结果是可以想见的,没有发现外星信号,倒是收到了人类自己的干扰信号。德雷克还和卡尔·萨根一起提出了著名的德雷克方程(也称绿岸方程),描述银河系中可能存在的文明数量。 如果我们把阿西雷博的发射方向设定为南门二,而且此时正好有位观测者在用射电望远镜观测太阳方向,而且使用的频率也是这个频率,那么他会发现什么呢?在他的射电望远镜中,阿西雷博发出的信号将是全宇宙最强的信号,比太阳信号要强一百万倍。人类不需要妄自菲薄,纵然我们并非有多么先进,但我们仍然可以在宇宙中强有力地表现我们的存在。上图可以简略地说明一下,太阳的辐射基本上符合黑体辐射。对于5700K的太阳表面,辐射的大部分能量都集中在可见光区域。在波长0.4到0.8 微米的这个区域内,就集中了50%以上的能量。而在波长超过1毫米的广阔的无线电波区域,只分到了1%都不到的能量。当然,由于黑体辐射在无线电波区域太弱,太阳的无线电波辐射中黑体辐射是很次要的,主要的辐射是来自于太阳大气中的带电粒子的辐射。当太阳处于11年周期中的宁静时期(比如今年就是,黑子活动少得可怜),宁静太阳射电非常微弱,当活动剧烈的时候,一个大耀斑的射电辐射就会使太阳的无线电波辐射增强百倍以上。 1932年,央斯基第一次发现了宇宙中的无线电辐射。我们很容易认为,这个射电源理所当然应该是太阳,就如同白昼时候阳光使一切都黯然失色一样。然而,不是。第一个发现的这个射电源是银河核心,离我们远达3万多光年。1937年,雷伯自己动手造出了世界上第一架射电望远镜(直径9米),用它观测天空,画出了第一张射电天图,观测到了许多宇宙中的射电源。但是他对太阳射电的搜索却以失败告终,因为此时是太阳活动的宁静期。一直到1942年,当太阳“苏醒”过来的时候,英国防空部队发现他们的雷达时常遭到突然的强烈干扰,一开始还以为是德国的秘密武器,后来才发现原来是太阳射电。 对于和太阳相似的大部分普通恒星,它们的射电都很微弱。比如说南门二吧,A/B两星的射电就微弱得几乎无法观测。反而是在可见光区域最暗弱的比邻星,因为时常会有耀变,在耀变时候倒是一颗在射电望远镜中的亮星。因此,恒星对希望用无线电波通讯的智慧生命(他们应该住在比较安稳的恒星旁边)并没有多大干扰。 太阳的射电辐射是几乎均匀地射向四面八方的,而且分布在所有波长上。而行星雷达站发送信号时候,定向性很好,集中在很小的角度里,发射功率也集中在很小的波长范围(对应的频率范围也很小)里。这样一来,在特定的方向和特定的频率,阿西雷博压倒太阳简直是易于反掌。如果我们想和南门二上技术水平和我们一致的文明通讯,把天线转向南门二直接发送就完全足够了――不过,每次对话一来一回都得要将近九年。 如此看来,似乎探测外星智慧文明并非一件很难的事,只要他们也发送无线电信号的话。不过,别忘了为了让阿西雷博的强度超过太阳,我们做了多少限制。首先,发射的方位是定向的,只发到天空中很小的一个区域里。其次,频率也限制在很小的范围里。这一来,要接受到一个外星文明发给我们的无线电信号,我们的射电望远镜要在正确的时刻首先正好指向那个方向,其次还要正好用同一个频率在接收。
b43d546d55fbb2fba9ce9af34f4a20a44423dcbb.jpg (50.55 KB, 下载次数: 1)
 
如果希望有比较大的把握的话,比如监控1000光年内的信号,考虑到1000光年内的恒星数量就已经要以百万计的话,那么要监控这么多的恒星,还得对每颗恒星同时监视很多个频率,实在是个很大的工程。不过,其难度主要是在数量之多,倒不是在技术上。当然,即使监控了这么多恒星,数据分析也是个大得吓死人的工作,现在的SETI@home实际上就是个发动大家一块来分析的项目。 
目前的监控频率,最常用的是21厘米的波长,对应的频率是1420兆Hz,正好处于GSM手机的单频(900兆赫)和双频(1800兆赫)之间。这个频率受到特别青睐的原因是因为这是宇宙中最丰富的元素——中性氢原子的辐射频率,又是宇宙中射电噪声最少的区域,而且地球大气对这个频率也很透明。“想当然”的,这个频率理应得到所有希望进行无线电联系的文明的特别重视。为了表示对天文学家的尊敬,这个频率附近是国际无线电标准中的频率禁区,不得把无线电设备的工作频率设在这个波段。 当然,也许还有这种可能性,外星人早已不屑于用无线电这种落后的通讯方式了,而是改用更高级的方式,比如说中微子,引力波或者干脆是虫洞等等。地球人类这种落后的,只知道无线电通讯的生物根本就没有被认为有资格加入文明俱乐部(比如《乡村教师》),那么当然万事休提。但如果他们愿意带我们玩,那么地球已经拥有足够的技术,如果舍得投入人力物力和金钱的话。当然,还要能够忍受纯粹的单方面通讯,目前不会有人受得了可能一次对话花上个一千年吧。 人类对太空文明的监听一直在持续,不过现在各国政府似乎都没有多大的公开的兴趣了,当然还有许多人认为政府在私下和外星人交流。NASA申请的拨款在美国国会被驳回的理由之一是与其花这么多钱在太空找智慧生命,还不如在华盛顿找几个聪明人,虽然实话说,这笔预算连买B-2的半边翅膀都不够。但是,依靠着来自其它地方的钱,这些计划还是坚持在进行,而且技术上也有了很多进步,现在监控的范围远大于奥兹玛计划,灵敏度提高了很多,信号分析能力也大为增强。至于钱么,象艾伦(盖茨的合伙人)就很愿意出钱造一架大型射电望远镜专用于这种搜索。 当然,直至今天我们在无线电方面对外星文明的搜索依然一无所获的原因,我们人类也难辞其咎。黑暗中一群一声不吭的人和一群聋子其实没什么差别。而到目前为止,大体上我们还是遵循了“不敢高声语,恐惊天上人”的宗旨,而不是“嘤其鸣兮,求其友声”,已经公开的向外星发送无线电信号只有一次,是 1973年阿西雷博向M13(就是在首帖提到的那个球状星团),距离远达24000光年,所以对“人生不满百”的我们来说,纵使“长怀千岁忧”也管不着了。当然啦,至于红岸这种类型的政府和私人性质的不公开通讯,有没有以及有多少就没法说清了。 当然,人类也用了其它一些方法向外界表示自己的存在,比如说先驱者10/11号就各带了一块划了些线条的镀金铝板,预计几十万年后,会飞到某颗恒星的附近(离恒星大概几光年之类)。这种信息,与其说是通讯,不如说是丢漂流瓶比较合适。 那么,我们人类在宇宙中算是躲藏得比较好了么?遗憾地告诉杞人忧天一族,No!虽然人类开始无线电通讯才一百多年,我们制造的足以泄露我们存在的各种噪声已经太多了。比如从大功率的信号来说,行星雷达站总难免会有泄漏信号的时候,当年美苏的大功率雷达(在挨洲际导弹之前可以提供90秒预警,以便有时间让大家同归于尽)更是一刻不停地在发射大功率雷达信号。从生活上来说,微波是可以穿越电离层的,电视台发射的信号自然也是同时在向宇宙同时广播,虽然说收看信号的外星人可能要抱怨信号质量不好。即使我们及时转入光纤通讯,但是几十年间已经发出去的信号早已覆水难收,正在以光速向外扩张,早已扫过南门二、天狼星以及更远的许多星球。如果有观测者在南门二的话,早就可以发现地球不太正常。 任何一个能降临地球的外星文明,都必然在技术上显得有如神灵一般强大无比。当然,他们如何对待我们,完全要看他们自己的决定。但是,即使是教徒,也不会光念叨着天上掉下馅饼,人类因为不知在何方的外星文明而停止进步是荒诞的。 人类如果不甘于灭亡,建设一个更好的世界,认识更广阔的宇宙就是必然的选择。 ps: 按规划,今年底FAST射电望远镜将在贵州开始建造,2013年建成。这是一个多国合作项目,技术上主要是中英合作。FAST构造类似于阿西雷博,但直径达到500米,灵敏度提高很多。这也将是人类认识宇宙的进步历程的一部分。 主要参考: 刘慈欣 《三体》 (参考《流浪地球》 《乡村教师》) 《中国大百科全书-天文学》 《千亿个太阳》 卡尔·萨根 《外星球文明的探索》 阿西雷博天文台 Ω
 

第二篇三体问题:三体问题

基本简介折叠编辑本段
三体问题
中文名称:三体问题
英语名称:three-body problem
N体问题及三体问题的概念 N体问题:N体问题可以用一句话写出来:在三维空间中给定N个质点,如果在它们之间只有万有引力的作用,那么在给定它们的初始位置和速度的条件下,它们会怎样在空间中运动。
三体问题:最简单的例子就是太阳系中太阳,地球和月球的运动。在浩瀚的宇宙中,星球的大小可以忽略不及,所以我们可以把它们看成质点。如果不计太阳系其他星球的影响,
三体问题
那么它们的运动就只是在引力的作用下产生的,所以我们就可以把它们的运动看成一个三体问题。
天体力学中的基本力学模型。研究三个可视为质点的天体在相互之间万有引力作用下的运动规律问题。这三个天体的质量、初始位置和初始速度都是任意的。在一般三体问题中,每一个天体在其他两个天体的万有引力作用下的运动方程都可以表示成3个二阶的常微分方程,或6个一阶的常微分方程。因此,一般三体问题的运动方程为十八阶方程,必须得到18个积分才能得到完全解。然而,目前还只能得到三体问题的10个初积分,还远不能解决三体问题。
研究起源折叠编辑本段
三体问题
在二十世纪的第一次数学家大会(1900年)上,二十世纪伟大的数学家希尔伯特(David Hilbert)在他著名的演讲中提出了23个困难的数学问题,这些数学问题在二十世纪的数学发展中起了非常重要的作用。在同一演讲中,希尔伯特也提出了他所认为的完美的数学问题的准则:问题既能被简明清楚的表达出来,然而问题的解决又是如此的困难以至于必须要有全新的思想方法才能够实现。 为了说明他的观点,希尔伯特举了两个最典型的例子:第一个是费尔马(Pierre de Fermat)猜想,即代数方程 xn+yn=zn 在n大于2时是没有整数解的;第二个就是所要介绍的N体问题的特例——三体问题。 值得一提的是,尽管这两个问题在当时还没有被解决,希尔伯特并没有把他们列进他的问题清单。但是在整整一百年后回顾,这两个问题对于二十世纪数学的整体发展所起的作用恐怕要比希尔伯特提出的23个问题中任何一个都大。
研究方法折叠编辑本段
三体问题
由于三体问题不能严格求解,在研究天体运动时,都只能根据实际情况采用各种近似的解法,研究三体问题的方法大致可分为3类: 第一类是分析方法,其基本原理是把天体的坐标和速度展开为时间或其他小参数的级数形式的近似分析表达式,从而讨论天体的坐标或轨道要素随时间的变化;
第二类是定性方法,采用微分方程的定性理论来研究长时间内三体运动的宏观规律和全局性质;
第三类是数值方法,这是直接根据微分方程的计算方法得出天体在某些时刻的具体位置和速度。这三类方法各有利弊,对新积分的探索和各类方法的改进是研究三体问题中很重要的课题。
数学推断折叠编辑本段
三体问题
初通高中物理和大学微积分的读者都不难推出三体问题的数学方程。事实上,根据牛顿(Issac Newton)万有引力定理和牛顿第二定律,我们可以得到:
m1(d2 q1i/dt2)= k m1 m2 /(q2i - q1i)(r312) + km1 m3 /(q3i - q1i)(r313)
m2(d2 q2i/dt2)= k m2 m1 /(q1i - q2i)(r321) + km2 m3 /(q3i - q2i)(r323)
m3(d2 q3i/dt2)= k m3 m1 /(q1i - q3i)(r331) + km3 m2 /(q2i - q3i)(r332)
( i =1,2,3 )其中m i 是质点的质量,k 是万有引力常数,r ij 是两个质点m i 和m j 之间的距离,而 q i1 , q i2 , q i3 则是质点 m i 的空间坐标。所以三体问题在数学上就是这样九个方程的二阶常微分方程组再加上相应的初始条件。(事实上根据方程组本身的对称性和内在的物理原理,方程可被简化以减少变量个数)。而N体问题的方程也是类似的一个 N2 个方程的二阶常微分方程组。 当 N=1 时,单体问题是个平凡的方程。 单个质点的运动轨迹只能是直线匀速运动。当 N=2 的时候 (二体问题),问题就不那么简单了。但是方程组仍然可以化简成一个不太难解的方程,任何优秀的理科大学生大概都能轻易解出来。简单来说这时两个质点的相对位置始终在一个圆锥曲线上,也就是说如果我们站在其中一个质点上看另一个质点,
那么另一个质点的轨道一定是个椭圆,抛物线,双曲线的一支或者直线。二体问题又叫开普勒(Johannes Kepler)问题,它是在1710年被瑞士数学家约翰伯努利(Johann Bernoulli) 首先解决的。N体问题的提出大概可以追溯到上千年前,但是这一问题的第一个完整的数学描述(象使用上面这样的微分方程)是出现在牛顿的“自然哲学的数学原理”(Philosophiae Naturalis Prinicipia Mathematica,1687年出版)一书中。在他的著作中,牛顿成功地运用微积分证明了开普勒的天文学三大定律,但是奇怪的是他的书里并没有给出二体问题的解,尽管这两者是紧密相关的,而且现在的人们还是相信牛顿当时完全有能力自己给出二体问题的解。至于三体问题或者更一般的N体问题(N大于二),在被提出以后的二百年里,被十八和十九世纪几乎所有著名的数学家都尝试过,但是问题的进展是微乎其微的。尽管在失败的尝试中微分方程的理论被不断地发展成为一门更成熟的数学分支,但是对于这些发展的源头——N体问题,人们还是知道的太少了。终于在十九世纪末期,也就是希尔伯特做他的著名演讲前几年,人们期待的重大突破出现了。
特殊情况折叠编辑本段
三体问题
四种特殊情况:
1、三星成一直线,边上两颗围绕当中一颗转。
2、三星成三角形,围绕三角形中心旋转。
3、两颗星围绕第三颗星旋转。
4、三个等质量的物体在一条8字形轨道上运动。 限制性三体问题
三体问题的特殊情况。当所讨论的三个天体中,有一个天体的质量与其他两个天体的质量相比,小到可以忽略时,这样的三体问题称为限制性三体问题。一般地把这个小质量的天体称为无限小质量体,或简称小天体;把两个大质量的天体称为有限质量体。 把小天体的质量看成无限小,就可不考虑它对两个有限质量体的吸引,也就是说,它不影响两个有限质量体的运动。于是,对两个有限质量体的运动状态的讨论,仍为二体问题,其轨道就是以它们的质量中心为焦点的圆锥曲线。根据圆锥曲线为圆、椭圆、抛物线和双曲线等四种不同情况﹐相应地限制性三体问题分四种类型:圆型限制性三体问题﹑椭圆型限制性三体问题﹑抛物线型限制性三体问题和双曲线型限制性三体问题。若小天体的初始位置和初始速度都在两个有限质量体的轨道平面上,则小天体将永远在运动。尔按限制性三体问题研究月球的运动,略去太阳轨道偏心率﹑太阳视差和月球轨道倾角,实际上这就是一种特殊的平面圆型限制性三体问题。他得到的周期解,就是希尔月球运动理论的中间轨道。 在小行星运动理论中,常按椭圆型限制性三体问题进行讨论,脱罗央群小行星的运动就是太阳-木星-小行星所组成的椭圆型限制性三体问题的等边三角形解的一个实例。布劳威尔还按椭圆型限制性三体问题来讨论小行星环的空隙。抛物线型限制性三体问题和双曲线型限制性三体问题在天体力学中则用得很少。人造天体出现后,限制性三体问题有了新的用途,常用于研究月球火箭和行星际飞行器运动的简化力学模型,见月球火箭运动理论和行星际飞行器运动理论)。
研究趣闻折叠编辑本段
三体问题
小说的基础科幻作家刘慈欣的<地球往事>三部曲之一《三体》即是以此问题为基础而创作的这是一个暂名为《地球往事》的系列的第一部,可以看做一个更长的故事的开始。是一个关于背叛的故事,也是一个生存与死亡的故事,有时候,比起生存还是死亡来,忠诚与背叛可能更是一个问题。疯狂与偏执,最终将在人类文明的内部异化出怎样的力量?冷酷的星空将如何拷问心中道德。作者试图讲述一部在光年尺度上重新演绎的中国现代史,讲述一个文明二百次毁灭与重生的传奇。 三体问题和瑞典国王的奖金(奥斯卡国王——米塔格莱夫勒——庞加莱) 1885年,在刚创刊不久的瑞典数学杂志Acta Mathematica的第七卷上出现了一则引人注意的通告:为了庆祝瑞典和挪威国王奥斯卡二世在1889年的六十岁生日,Acta Mathematica将举办一次数学问题比赛,悬赏2500克郎和一块金牌。
而比赛的题目有四个,其中第一个就是找到N体问题的所有解。参加比赛的各国数学家必须在1888年的6月1日前把他们的参赛论文寄给杂志的创办人和主编,著名的瑞典数学家米塔格莱夫勒(GostaMittag-Leffler)。所有论文将被匿名地被一个国际委员会评判以决出优胜者,然后优胜者的论文将发表在Acta Mathematica上。这个委员会由三个当时赫赫有名的数学家组成:德国的维尔斯特拉斯(Karl Weierstrass),法国的赫密特(Charles Hermite)和米塔格莱夫勒本人组成。 从现代的观点来看,这样的比赛也许有“抄作”和给新杂志做广告的嫌疑。(事实上当时就有一些数学家这样批评这种比赛,象德国的克隆奈克(Leopold Kronecker))。但是从历史上看,米塔格莱夫勒和奥斯卡二世的动机是好的,是为了推动科学的发展。奥斯卡二世本人在大学中数学就学得很好,他和许多当时著名的数学家,象维尔斯特拉斯,科瓦列夫斯卡雅(Sonya Kovalevskaya)等都有亲密的关系。而米塔格莱夫勒更是雄心勃勃,想把这样的比赛每四年举行一次。可惜这个设想没有实现,比赛只举办了一次就夭折了,否则的话也许今天数学的最大奖不是菲尔兹(John Charles Fields)奖而是奥斯卡奖了(那样后来美国的电影奖大概也要考虑换个名字了)。
回到比赛本身。这次比赛在当时轰动一时,虽然奖金不高,这种崇高的荣誉是当时罕见的,要知道瑞典更有名的“炸药奖”诺贝尔(Alfred Bernhard Nobel)奖是在几年后的1896年才开始评选的。但是由于问题的困难程度,大多数一开始跃跃欲试的数学家后来都知难而退,最后只有四五个数学家真正交了他们的答卷。而优胜者也并不难选出,虽然还是没有人能完整地解决任何一个问题,但是所有评委一致认为其中一份答卷对于N体问题的解决做出了关键的贡献,应该把奖颁给这位数学家。这位获胜者就是法国数学家,物理学家庞加莱(Jules Henri Poincare)。 庞加莱在现代数学历史上占有举足轻重的地位,他曾被称为现代数学的两个奠基人之一(另一个是黎曼(Bernhard Riemann)),也有人称他为历史上精通当时所有数学的最后两个人之一(另一个就是希尔伯特))。
而1885年的庞加莱只有31岁,虽然已初露锋芒,但还是一位希望能够一举成名的年轻数学家,所以这次比赛是个大好的机会,这也迫使他先放下手上其他的工作,集中精力投入到天体力学和N体问题的研究中。庞加莱获奖的论文“关于三体问题的动态方程”(Sur le probleme des trois corps et les equations de la dynamique) 最后在1890年在Acta Mathematica上发表,论文长达270页,占了整整半卷杂志。 这篇重要论文使原来就已有不小名气的年轻庞加莱更加誉满整个欧洲数学界,也使他得到了新的热情和动力继续进行他在这篇论文中开始的工作。从1892年到1899年,庞加莱陆续出版了他的三大卷宏伟巨著“天体力学的新方法”(Les MethodsNouvelles de la Mecanique Celeste)。他的获奖论文和这三卷书可以说奠定了现代天体力学,动力系统,微分方程定性理论,甚至混沌理论的基础,尽管大多数他的思想直到几十年后才被广大的数学工作者所领悟进而发展成现代的数学理论。

第三篇三体问题:三体问题新突破


三体问题新突破
刘明 《 光明日报 》( 2013年04月09日   12 版) 三体问题示意图 资料图片
    牛顿的引力理论正确预测两个互相吸引的天体(比如太阳和地球)的运动规律——它们的轨道基本是椭圆形。但如果有3个天体(比如太阳、地球和月球)互相作用,它们的运行轨道有什么规律?这就是著名的“三体问题”。最近,有两位科学家一口气找到了13族新的周期性特解,震惊了科学界。
 
    “三体问题”的提出可以追溯到17世纪80年代,当时英国物理学家、数学家艾萨克·牛顿运用他的引力理论正确预测两个互相吸引的天体(比如太阳和地球)的运动规律——它们的轨道基本是椭圆形。但如果有3个天体,比如太阳、地球和月球相互作用,它们的运行轨道是什么样的?牛顿没能给出通用的特解答案。
 
    简单地说,“三体问题”就是探讨3个质量、初始位置和初始速度都为任意的可视为质点的天体,在相互之间万有引力的作用下的运动规律问题。
 
    随后的200多年中,科学家们为解决这个问题绞尽脑汁,直到1887年德国数学家、天文学家海因里希·布伦斯指出,寻找三体问题的通解注定是无用功,只在特定条件下成立的特解才可能存在。
 
    1889年,法国数学家、天体力学家亨利·庞加莱将复杂的三体问题简化成了所谓的“限制性三体问题”。但他发现,即使对简化了的限制性三体问题,在同宿轨道或者异宿轨道附近,解的形态会非常复杂,以至于对于给定的初始条件,几乎没有办法预测当时间趋于无穷时,这个轨道的最终命运。而这种对于轨道的长时间行为的不确定性,这也就是我们目前称之为“混沌”(chaos)的现象。现在人们知道,通常情况下三体问题的解是非周期性的。
 
    要发现三体问题的周期性特解绝非易事——自“三体问题”被确认以来的300多年中,人们只找到了3族周期性特解。
 
    法国数学家、物理学家约瑟夫·拉格朗日和瑞士数学家、物理学家莱昂哈德·欧拉在18世纪得到了一些结果;20世纪70年代,美国数学家罗杰·布鲁克和法国天文学家米歇尔·赫农借助计算机又得到了更多的结果;1993年,美国数学家、物理学家克里斯·摩尔发现一种奇特现象——特解中3个天体的运动似在一条“8”字形的轨道上互相追逐。上述所有这些被发现的特解可以被归结为下面3族:拉格朗日-欧拉族、布鲁克-赫农族和“8”字形族。拉格朗日-欧拉族的解比较简单,就是三个天体等间距地在圆轨道上运动,就像旋转木马那样。布鲁克-赫农族的解比较复杂,两个天体在里面横冲直撞,第三个天体在它们外围做环绕运动。
 
    要知道,发现新的特解不是一件容易的事:三个天体在空间中的分布可以有无穷多种情况,必须找到合适的初始条件——起始点、速度等,才能使系统在运动一段时间之后回到初始状态,即进行周期性的运动。
 
    现在,科学家们有了新突破。塞尔维亚物理学家米洛万·舒瓦科夫和迪米特拉·什诺维奇发现了新的13族特解。他们在著名学术期刊《物理评论快报》上发表了论文,描述了他们的寻找方法:运用计算机模拟,先从一个已知的特解开始,然后不断地对其初始条件进行微小的调整,直到新的运动模式被发现。这13族特解非常复杂,在抽象空间“形状球”中,就像一个松散的线团。
 
    三体问题特解的族数被扩充到了16族。这一新发现令科学界欢欣鼓舞。多年来一直从事三体问题研究的美国科学家罗伯特·范德贝说,“我非常喜欢这一成果”。另一位美国科学家理查德·蒙哥马利说:“这些结果非常美妙,而且描述非常精彩。”中国科学家周海中表示,他们的成果加深了人们对天体运动的了解,促进了天体力学和数学物理的进一步发展,尤其是对人们研究太空火箭轨道和双星演化很有帮助。
 
    (作者为日本东京大学博士后)

本文来源:https://www.shanpow.com/xx/480275/

《三体问题.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式

相关阅读
  • 初三写物作文集合14篇 初三写物作文集合14篇
  • 写物作文我爱葡萄范文十五篇 写物作文我爱葡萄范文十五篇
  • 高二写物作文精彩(通用3篇) 高二写物作文精彩(通用3篇)
  • 多肉植物光棍树写物作文(合集3篇) 多肉植物光棍树写物作文(合集3篇)
  • 蝉的夏天写物作文(锦集5篇) 蝉的夏天写物作文(锦集5篇)
  • 【七年级描写春雨的诗句】七年级描写春雨的写物作文600字 【七年级描写春雨的诗句】七年级描写春雨的写物作文600字
  • 【初中生写小说】初中生写小草的写物作文600字 【初中生写小说】初中生写小草的写物作文600字
  • 【初二关于秋天的作文】初二关于秋雨的写物作文600字三篇 【初二关于秋天的作文】初二关于秋雨的写物作文600字三篇
为您推荐
  • 写小伙伴的作文开头结尾_写小伙伴的作文
    写小伙伴的作文开头结尾_写小伙伴的作文
    在童年生活中,我们认识了许许多多的小伙伴。本站精心为大家整理了写小伙伴的作文,希望对你有帮助。写小伙伴的作文在你有困难的时候,有个人会给予你最真诚的帮助。这就是伙伴。我的小伙伴不仅家住的离我很近,更是
  • 写物的说明文
    写物的说明文
    写物的说明文(共4篇)说明文作文500字写物说明文作文500字篇一:说明文作文500字钱币是商品、特别是商品经济交换发展的产物,如果把国家看作人体,它则像血液一样,流通于四面八方,维持着整个肌体的活力。贝壳是最早的钱币之一
  • 写物品的作文1000
    写物品的作文1000
    写物品的作文1000(共3篇)写粗心大意的作文1000字写粗心大意的作文1000字 半只羊的故事 今天下午,表哥们要到我家来做客。奶奶上午出门时吩咐我:“阿妹,叫爸爸去买只鸭,大的买半只,小的买一只。再买一点羊肉,哥哥喜欢
  • 写物的作文500字
    写物的作文500字
    写物的作文500字(共1篇)说明文作文500字写物说明文作文500字篇一:说明文作文500字钱币是商品、特别是商品经济交换发展的产物,如果把国家看作人体,它则像血液一样,流通于四面八方,维持着整个肌体的活力。贝壳是最早的钱币之一
  • 写物的作文700字
    写物的作文700字
    写物的作文700字(共2篇)写((700字)作文精选作文:写((700字)作文 写作文是一种渲泄。每当你遇到什么烦心事的时候,心里十分难受的时候,你想隐瞒,可是心中的难受就只能自己一个人承担,这时,你可以选择把这件事情记录下来,
  • 写物的作文600字
    写物的作文600字
    写物的作文600字(共1篇)写物的作文600字写物的作文600字写物的作文600字(一)最喜欢的那支黑色钢笔安静地躺在我的抽屉里,蒙上了许多灰。正是因为太过喜爱,所以我连用也不大舍得用。遗憾的是,这并不是什么旧友送的情深义重的>
  • 写物的作文300字
    写物的作文300字
    写物的作文300字(共1篇)写物的作文300字写物的作文300字写物的作文300字(一)如果你问别人:朋友,你是否敬佩过蚂蚁?大概有百分之七十的人都会说没有。是啊,谁会敬佩这卑微的蚂蚁呢?但如果听听它们的>故事,这种想法应该就不
  • 写物理老师的句子
    写物理老师的句子
    写物理老师的句子(共5篇)描写老师的词语、句子、段落及祝福语描写老师的词语、句子、段落及祝福语一、写老师的词语关怀,关心,交心,沟通,爱护,教育,教诲,慈祥,亲切,随和,操心,辅导,严肃,严厉,严谨,指导,风趣,表扬,纠正,古
  • 事理说明文作文500字
    事理说明文作文500字
    事理说明文作文500字(共5篇)说明文作文500字写物说明文作文500字篇一:说明文作文500字钱币是商品、特别是商品经济交换发展的产物,如果把国家看作人体,它则像血液一样,流通于四面八方,维持着整个肌体的活力。贝壳是最早的钱币之一
  • 五年级写雾的作文400字
    五年级写雾的作文400字
    五年级写雾的作文400字(共4篇)关于雾的作文400字关于雾的作文400字雾作者:孟怡含雾来之前,所有景物一片清晰。大街上,行人在匆匆忙忙地赶着去上班、上学,汽车、自行车都川流不息。整个城市都被大雾给笼罩其下,雾其实就是触及地面的云,